A CONVENIENT SYNTHESIS OF KETONES

Takeshi Wakamatsu, Kozo Akasaka, and Yoshio Ban
Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan

(Received in Japan 17 July 1974; received in UK for publication 25 September 1974)

In the recent years, the synthetic utilization of nucleophilic acylation (Equation 1) has been extensively investigated, $^{1 \cdot 8}$ which involves the direct method with acyl metal compounds $^{2 \cdot 4}$ and the indirect method proceeding <u>via</u> " masked " acyl anions. $^{1,5 \cdot 8}$

(Equation 1)
$$\begin{array}{cccc}
R-C^{\theta} & \xrightarrow{E} & R-C-E \\
0 & 0
\end{array}$$

It is known that the acyloins are subject to alkylation in the presence of various bases, taking place usually at the carbon carrying the hydroxyl group. 9,10

We wish to report a novel simplified procedure of alkylation of lithium acyloin enediolates ($\underline{3}$) easily obtained from the enediol-bis-trimethylsilyl ethers ($\underline{2}$) with methyllithium, which is combined with the subsequent reduction followed by the oxidative cleavage, providing the ketones [($\underline{6}$) RCOR"] with the aldehydes [($\underline{7}$) RCHO] in excellent overall yields. This method constitutes " a detour but a facile way " to the synthesis of ketones, corresponding to the acyl anion synthesis which starts from the esters ($\underline{1}$). The processes are demonstrated in Scheme 1.

(Scheme 1)

$$R-C-OR'$$
 O
 Me_3SiO
 $OSiMe_3$
 $OSiMe_3$

The enediol-bis-trimethylsilyl ethers ($\underline{2}$)¹¹ readily prepared in high yields by the acyloin condensation of the esters ($\underline{1}$) in the presence of trimethylchlorosilane were converted by addition of 2 equiv. of methyllithium in monoglyme into its enediolates ($\underline{3}$), which were immediately subjected to alkylation with alkyl halides to produce exclusively the a-hydroxy ketones ($\underline{4}$) in good yields.

The typical procedure with $R = \underline{n}$ -propyl is described and the results are compiled in Table 1 and 2.

- A. Acyloin condensation [$(\underline{1}) \rightarrow (\underline{2})$]: Ethyl butyrate is submitted to the acyloin condensation using trimethylchlorosilane according to the modified procedure. ¹¹ The enediol-bis-trimethylsilyl ether (2) is purified by distillation.
- B. Alkylation [(2) + (3) + (4)]: To a solution of (2)(0.01 mol) in 10 ml of dry monoglyme is added a solution of 0.022 mol of methyllithium in ether dropwise with vigorous stirring. The whole mixture is stirred at room temperature for 30 min. After replacement of the solvent by tetrahydrofuran, a solution of the halide (0.011 mol) in 5ml of tetrahydrofuran is added, and the mixture is stirred overnight (<u>ca</u>. 15 hrs). Removal of the solvent, addition of water, and extraction with ether or methylene chloride are followed by drying over MgSO₄. The solvent was removed and the residue was purified by distillation to give the compound ($\frac{4}{2}$). C. Generation of the ketones [($\frac{4}{2}$) + ($\frac{5}{2}$) + ($\frac{6}{2}$)]: Reduction of ($\frac{4}{2}$) (0.006~0.008 mol) with sodium borohydride (0.006~0.008 mol) in methanol at room temperature for 1~5 hr in a usual manner afforded the diol ($\frac{5}{2}$), which is oxidized with lead tetraacetate (0.008~0.01 mol) in anhydrous ether at room temperature for 2~15 hrs. A saturated sodium bicarbonate solution is added, the resulting mixture is extracted with ether, and the extract is dried over MgSO₄. The solvent is removed to furnish the crude ketones ($\frac{6}{2}$), which are purified by silica-gel chromatography or by distillation to separate from the aldehydes produced as by-products.

Thus, the above reaction sequences do not involve any unit process carried out by heating. When a suitable ester is available, it could be converted to the valuable ketones by the present method. A useful application is described in the following communication.

5

6

7

8

<u>Table 1.</u> Preparation of the α -hydroxy ketones ($\underline{4}$) from the enediolate ($\underline{3}$) derived from the enediol-bis-trimethylsilyl ether ($\underline{2}$) and alkyl halides.

Table 2. Preparation of the ketones ($\underline{6}$) from the α -hydroxy ketones ($\underline{4}$).

n-pentyl bromide

n-hexyl bromide

benzyl bromide

cyclohexyl iodide

80

75

90

64

80~85

100~105

115∿120 95∿100

No.	R	Reduction(NaBH ₄) Yield (%)	Oxidation(Pb(OAc) ₄) Yield (%)	Ketone b.p. °C(mm/Hg)
1	n-pentyl	quant.	95	65~70(12)
2	<u>n</u> -hexy1	97	quant.	47 ∿48(2)
3	benzyl	quant.	97	107~109(14)
4	cyclohexyl	quant.	90	50~55(2)

Acknowledgment: Financial assistance by the Ministry of Education is acknowledged.

References

- 1. D. Seebach, Angew. Chem. internat. Edit., 8, 639 (1969).
- I. I. Lapkin, G. Y. Anvarova, and T. N. Povarnitsyna, Z. Obsc. Chim., 36, 1952 (1966)
 J. Gen. Chem., (USSR) (English transl.) 36, 1945 (1966).
- U. Schollköpf and F. Gerhart, <u>Argew. Chem.</u>, <u>79</u>, 819, 990 (1967); <u>Angew. Chem. internat.</u>
 Edit., <u>6</u>, 805, 970 (1967).
- 4. E. J. Corey and L. S. Hegedus, J. Amer. Chem. Soc., 91, 4926 (1969).
- 5. G. Stork and L. Maldonado, J. Amer. Chem. Soc., 93, 5286 (1971).
- K. Ogura and G. Tsuchihashi, <u>Bull. Chem. Soc. Japan</u>, <u>45</u>, 2203 (1972); <u>Tetrahedron Letters</u>, 3151 (1971); <u>ibid.</u>, 1383, 2681 (1972).
- 7. J. E. Richman, J. L. Herrmann, and R. H. Schlessinger, <u>Tetrahedron Letters</u>, 3267 (1973);
 - J. L. Herrmann, J. E. Richman, and R. H. Schlessinger, <u>ibid.</u>, 3267, 3275 (1973);
 - J. L. Herrmann, J. E. Richman, P. J. Wepplo, and R. H. Schlessinger, ibid., 4707 (1973);
 - J. L. Herrmann, G. R. Kieczykowski, R. F. Romanet, P. J. Wepplo, and R. H. Schlessinger, ibid., 4711 (1973); J. L. Herrmann, G. R. Kieczykowski, R. F. Romanet, and R. H. Schlessinger. ibid., 4715 (1973).
- 8. K. Oshima, K. Shimoji, H. Takahashi, H. Yamamoto, and H. Nozaki, <u>J. Amer. Chem. Soc.</u>, <u>95</u>, 2694 (1973).
- 9. J. H. van de Sande and K. R. Kopecky, Can. J. Chem., 47, 163 (1969).
- 10. H. G. Hein, Lieigs Ann. Chem., 735, 56 (1970).
- 11. For a good review, see K. Rühlmann, Synthesis, 209, 236 (1971).
- 12. G. Stork and P. E. Hudrlik, J. Amer. Chem. Soc., <u>90</u>, 4462, 4464 (1968).